Math 2050, HW 3 (due: 25 Oct)

(1) If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are two bounded sequence, show that

$$\limsup_{n \to +\infty} (x_n + y_n) \le \limsup_{n \to +\infty} x_n + \limsup_{n \to +\infty} y_n.$$

Show that the equality is not always true by an example.

- (2) If x₁ < x₂ are some real numbers and x_n = ¼x_{n-1} + ¾x_{n-2} for n > 2. Show that {x_n}_{n=1}[∞] is convergent and find the limit.
 (3) If r ∈ (0,1) and |x_{n+1} x_n| < rⁿ for all n > 1. Show that
- ${x_n}_{n=1}^{\infty}$ is a convergent.
- (4) Suppose $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence such that x_n is an integer for any $n \in \mathbb{N}$. Show that there is N such that x_n is a constant for n > N.